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Sir:

Buffer bases in aqueous solution catalyze the deprotona-
tion of carbon acids such as ketones (2) and nitroalkanes
(3). By contrast, there is some question about the magni-
tude of buffer-base catalysis in the deprotonation of hetero-
aromatic carbon acids at annular positions (4,53).

We present evidence that the hydrogen-deuterium ex-
change reactions of pyridinium ion (1) and pyridine 1-
oxide (II) are not significantyl catalyzed by buffer bases
in aqueous solution. Deprotonation of I at positions alpha
to the heteroatom was studied using neutral and anionic
buffer bases in deuterium oxide. Dedeuteration of 1l at
apositiongamma to the annular heteroatom was examined
using a neutral buffer base in water. Evidence has been
presented that substrates such as [ and I undergo H-D ex-
change reactions by simple deprotonation to give ylides
(5,0) and carbanions (7) such as 1l and [V. Rates were
determined by standard methods using NMR to follow
the reactions (5.7).

Equation 1 describes the dependence of the pseudo-
first order rate constant for exchange, ki, on the concen-

tration of deuteroxide ion (hydroxide ion) and buffer
bases B. This equation may be applied to our results more
conveniently when it has the form of equation 2 where k,
is the second-order rate constant for reaction of the carbon
acid with lyate ion and kg a second-order rate constant
kg =k [OD"] + kp[B] ()
ky/[OD™] =k, + kg|B]/[OD"] 2)
for reaction with a general base B. Equation 2 has the
form of an equation for a straight line, the intercept being
k, and the slope kp.

The results given in Table I show that ky/[OD™]
(labelled as k;) is cssentially constant as the [B]/[OD™]
or [B]/[OH™] ratio changes. For I the ratio of the con-
centrations of the bases varies by a factor of 9 and for 11
by a factor of 35. This means that kg is insignificant.
There is no evidence in these results for catalysis by buffer
bases. In other words, the Brgnsted 8 value for these re-
actions is essentially one.

These results may be interpreted in several ways; we
have summarized possibilities elsewhere (5). We favor an

TABLE 1

Kinetics of Hydrogen Exchange of 3,5-Dichloro-1-Methylpyridinium Chloride (1)
and 3,5-Dichloropyridine-4-d 1-Oxide (I11) in Aqueous Buffers (a)

Cpd pD or pH facid], M [base], M
[ (b) 7.41 (c) 0.010 0.010
7.63 (¢) 0.09 0.15
8.01 (¢) 0.04 0.15
8.07 (d) 0.46 0.27
{1 (e,f) 8.95 0.047 0.047
8.95 0.47 0.47
9.78 0.009 0.085
9.93 0.092 0.838

ky (sec™1) 1075[B]/{OD"] (M‘lkszec")
41X 107 2.0 81

6.8 X107 17.7 80
20X10°° 7.4 99

1.9 X 1075 11.5 81

1072[B]/[OH"}

5.2X10°3 2.8 0.30
54 X10°° 27.6 0.32
35X 1074 0.8 0.30
50X10°° 5.2 0.31

(a) 1.0 Tonic strength; potassium chloride added; reactions followed by NMR; [Cpd] ~0.5M; pK& = 14.70; pK{{, =12.72; k,
=(ky/Kw) - [H] or [D]. (b) 30.0°. (c) D,P04~ - DPO4 ~2. (d) Ethyl glycinate. (e) 75.0°. (f) Ethylenediamine buffer.
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internal return mechanism (8), equation 3, where the iso-
tope exchange process consists of two steps, ionization
and substitution. f ionization is reversible and § = 1, sub-
stitution becomes the slow step. Substitution is not likely
Lo be significantly dependent on acid-base properties. We
favor this mechanism because negative charge is likely to
be extensively localized; little solvent and structural re-
organization should result during the ionization step. Con-
sequently, reprotonation of the carbanion can be faster
than substitution (9).

chp=c.oonp 2B e oo @)

It will be of interest to determine whether other types
of heteroaromatic carbon acids show significant buffer
base catalysis for H-I) exchange at annular positions. I
substantial buffer catalysis is found and g <1, then a
mechanism similar to the one suggested here is not likely

Lo operate.
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